
NASA Contractor Report 189664

ICASE Report No. 92-22

ICASE
COMPILER ANALYSIS FOR IRREGULAR

PROBLEMS IN FORTRAN D

Reinhard von Hanxleden

Ken Kennedy
Charles Koelbel

Raja Das

Joel Saltz

Contract No. NAS1-18605

June 1992

Institute for Computer Applications in Science and Engineering

NASA Langley Research Center

Hampton, Virginia 23665-5225

Operated by the Universities Space Research Association

O'3
O

I
¢N
O"
Z

_Q

_Z
>-<

Z_

uJ Z _'_

0., c,n

OU.;W

O_

,,t'c_ -.-*

0" < ._

_Ju
_ 0
i ,_ ,,n

I c_

,,I"
-.0

0

0

National Aeronaulics and
Space Adminislration

langley Research Center
Hamplon, Virginia 23665-5225

COMPILER ANALYSIS FOR IRREGULAR PROBLEMS
IN FORTRAN D

Reinhard von Hanxleden, Ken Kennedy, Charles Koelbel

Center for Research oil Parallel Computation

Rice University

Houston, TX 772,51

Raja Das 1 and Joel Saltz 1

Institute for Computer Applications in Science and Engineering

NASA Langley Research Center

Hampton, VA 23665

ABSTRACT

We developed a dataflow framework which provides a basis for rigorously defining strate-

gies to make use of runtime preprocessing methods for distributed memory multiprocessors.

In many programs, several loops access the same off-processor memory locations. Our

runtime support gives us a mechanism for tracking and reusing copies of off-processor data.

A key aspect of our compiler analysis strategy is to determine when it is safe to reuse copies of

off-processor data. Another crucial function of the compiler analysis is to identify situations

which allow runtime preprocessing overheads to be amortized. This dataflow analysis will

make it possible to effectively use the results of interprocedural analysis in our efforts to

reduce interprocessor communication and the need for runtime preprocessing.

1Research was supported by the National Aeronautics and Space Administration under NASA Contract
No. NASl-18605 while the authors were in residence at the Institute for Computer Applications in Science

and Engineering (ICASE), NASA Langley Research Center, Hampton, VA 23665.

1 Introduction

We present a dataflow framework that can be employed to systematically make use of runtime

preprocessing methods aimed at loops in which some array references are made through a

level of indirection. The dataflow framework we present here pertains to collections of

loops with no loop-carried data dependences or with only accumulation type dependencies.

Such loops are often referred to as data-parallel loops, and are the primary target of the

Fortran D compiler [4]. The type of irregular loops we are trying to handle are typically

found in unstructured mesh explicit and mu]tigrid solvers, molecular dynamics codes, and

some sparse iterative linear systems solvers.

|n distributed memory machines, large data arrays need to be partitioned between lo-

cal memories of processors. These partitioned data arrays are called distributed arrays.

Long term storage of distributed array data is assigned to specific memory locations in the

distributed machine. In many irregular problems, we can reduce the amount of data to be

conmmnicated by using a partitioning algorithm that individually assigns each array element

to a specific processor. Furthermore, these machines often have a non-trivial communications

latency or startup cost. Therefore, efficiency demands that information to be transmitted

should be collected into relatively large messages; this in turn implies that the elements to

be sent and received by each processor should be precomputed. In irregular problems, the

communications pattern depends on the input data, typically because of some indirection

in the code. In this case, it is not possible to predict at compile time what data must be

prefetched.

We treat this lack of information by transforming the original parallel loop into two

constructs called an inspector and executor [6, 7]. During program execution, the inspector

examines the data references made by a processor, and calculates what off-processor data

needs to be fetched and where that data will be stored once it is received. The executor loop

then uses the information from the inspector to implement the actual computation. The

Fortran D compiler now under development at Rice University performs these tasks by calls

to the PARTI library built at ICASE.

The PARTI primitives (Parallel Automated Runtime Toolkit at ICASE) were designed

to ease the implementation of irregular computational problems on parallel architecture

machines by relieving the user or compiler writer of having to deal with many low-level

issues. These procedures

1. Coordinate interprocessor data movement,

2. Manage the storage of and access to copies of off-processor data, and

3. Support a shared name space by building a distributed translation table [9] to store

the local address and processor number for each distributed array element.

This functionality can be used directly to generate inspector/executor pairs. Each inspector

produces a communications schedule, which is essentially a pattern of communication for

gathering or scattering data. Hash tables are used to avoid repeatedly communicating the

same array elements. The executor has embedded PARTI primitives to gather or scatter data.

The primitives are designed so that the final parallel code remains as close as possible to the

original sequential code. The primitives issue instructions to gather, scatter or accumulate

(e.g. scatter followed by add) data according to a specified schedule. The latency or start-up

cost is reduced by packing several small messages with the same destinations into one large

message. Significant work has gone into optimizing the gather, scatter and accumulation

communication routines for the iPSC/860. It is not the purpose of this paper to describe

the design and implementation of PARTI in great detail; information on this can be found

elsewhere [1].

Our runtime support makes it possible to track and reuse off-processor data copies [2].

We generate incremental communications schedules to obtain only those off-processor data

not requested by a given set of pre-existing schedules. This gives us the runtime support we

need to combine and hoist gather, scatter and accumulate procedures. Removal of duplicates

is achieved by using a hash table. In a mesh solver, for example, the off-processor data to

be accessed by the edge schedule is first hashed using a simple hash function. Next all the

data to be accessed during the face_loop is hashed. At this point the information that exists

in the hash table allows us to remove all the duplicates and form the incremental schedule.

The data flow framework to be described here aims at providing good information about

what data are needed at which points in the code, along with information about what live

off-processor data are available. At compile time, we compute global flow information about

the communication characteristics of the loops around a flow graph. This framework bears

similarities to classical techniques such as common subexpression elimination, loop invariant

code motion, and dead code elimination. The framework provides a basis for determining at

compile time

• Where communication schedules are tb be generated,

• Where gather, scatter, and accumulate operations are to be placed, and

• When incremental schedules may be employed.

In our data flow analysis, some of the variables reflect inherent properties of the analyzed

program, while others calculate the results of heuristics we employ in order to producing the
gather and scatter operations. Our heuristics aim to

• Exploit situations where we can reuse communications schedules, and to

• Remove duplicate communications by combining and hoisting gather, scatter and ac-

cumulate procedures.

The rest of the paper is organized as follows. Section 2 provides some definitions and

terminology for the framework. Section 3 introduces the local flow variables, followed by

global variables in Section 4 and result variables in Section 5. Section 6 gives an extension

of the framework for handling reduction operations. In Section 7, we work through the data

flow variables for a program example, which is a simplified version of a mesh solver for which

Section 8 gives concrete experimental results illustrating the effect of exploiting data flow

information. Section 9 contains concluding remarks.

2

2 Basics of the Framework

This section describes the scope of the framework developed in this paper and defines some

concepts used in later sections.

2.1 The domain

Even though our implementation can handle other cases as well, we assume here for presenta-

tion purposes that all indirect references in the program text are of the form (array}({index_array}((lool_

For many programs, this can actually be achieved by forward substituting array indices. For

example, the code sequence j=ia(±); x(j)=10 would be treated as x(ia(i))=10. Arrays

which are never referenced indirectly are assumed to be analyzed using other methods [3]

prior to this analysis. References with multiple (but bounded) levels of indirection will re-

quire more levels of complexity in the dataflow framework; we do not consider potentially

unbounded indirection, as is found in linked lists.

Let V be the set of arrays which are accessed indirectly. We assume that each reference r

to some v E V is contained in some loop(s). Let L be the set of loops which directly enclose

an occurrence of some v E V. We assume that no l E L encloses any other m E L. One set

of data flow variables is computed for each element of a set of nodes, N. It is N = L U P,

where P contains one entry pad, l_,,_v, and one exit pad, lezit, for each loop l _ L containing

some l' C L. Furthermore, we assume l_ntry (l_t) to be executed before (after) I iff I has at

least one iteration. The framework operates on a loop flow graph G = (N, E) of the program,

where the edges E are simple control flow edges.

For example, if I is an outer time stepping loop which does not directly contain any

irregular array references but which contains a loop l' over mesh edges, then l' is represented

as a node in G and l is represented as some interval in G. In the following, loop refers to

elements of N, i.e., it may denote a pad as well.

Future work will present a complete framework in which summary information is built in

a bottom-up fashion similar to array kill information [3]. Finally, this paper only discusses

the case where the summarized loops have no data dependences, except for commutative

and associative reductions which are handled specially.

2.2 Array portions

Array portions are a central concept to the framework and best introduced by an example.

A portion x(ia(1 :n)) consists of the array x and the index set ia(1 :n). This index set in

turn consists of the index array ia and the range (1 :n), which has the lower bound 1 and

the upper bound n.

Several portions may be taken from the same array or may have the same index set.

The index range does not have to be known at compile time, so the bounds may contain

symbolics. No assumptions are made about whether different portions taken from the same

array are disjoint or whether they overlap each other partially or completely. This allows

analyzing symbolic index ranges, but it requires the analysis to be conservative when using

intersection and set subtraction in the equations.

!

The framework can be implemented using bit vectors, each bit representing one array

portion. The length of these bit vectors is bounded by the number of indirect array references

(i.e., it is linear in program size), and all equations given here are rapid [5]. Therefore,

using bit vectors for the analysis gives us good asymptotic running times. However, for

our examples (and probably also in a practical implementation), it seems advantageous to

represent the different flow variables as bit matrices. The rows of a bit matrix correspond to

the arrays of the portions represented (e.g. x in x(ia(l :n))), while the columns correspond

to the index sets (ia(l:n)). Theoretically that representation increases variable sizes from

linear in program size to quadratic in program size, so the feasibility of this approach depends

on how programs behave in practice. However, this representation makes potential schedule

sharing, for example, very easy to recognize by determining which index set columns have

more than one entry.

We assume that all indirect array references are identified in a previous pass over the

program text and construct bit vectors/matrices accordingly. 'For the analysis we also assume

that a (identity) dummy index array is inserted for all direct array references.

|
t

i

-5

--m

I-

!

iL:

ix

i

2.3 Operations on portions

To aid the distinction between portions, indirect array references, array elements, and sets

of all these constructs, we make a short digression to introduce the conversion operators

elements-of p (where p is some portion or set of portions), denoted]5, and references-of p,

denoted p. Assume we are given

• an array x;

• an index array ia(1:5);

• portions p = x(ia(pl: p_,)), q = x(ia(qt: %)), r = x(ia(rt: r_)); and

• sets of portions A = {p,q}, B = {p}, C = {r}.

We can reason about A, B, and C at different levels. For example, if the index ranges of the

portions are only known symbolically, one can determine at the portion level that

ADB

must hold, but no other relationships can be proven among the sets of portions. However, if

we know for example that

Pl = l,p,, = 3, ql = 3, q_, = 5, rl = 3, r,_ = 4,

then the elements-of operator, -, can be applied to the portions and to the sets thereof, to

obtain

ft = x(ia(1 : 5)),/) = x(ia(1 : 3)),C = x(ia(3: 4)).

The scope of _ is extended to set operators and predicates, so we can assert at the element

level that

AS_B,

ASC.

Assume furthermore that we know the values of the index array to be

ia(1:5) = 1,4,3,1,4.

Then the references-of operator, :, obtains

A = x(1,3,4), B = x(1,3,4), C= x(1,3).

With this knowledge, we conclude at the reference level that

Z ,7.

A DB DC.

We can see how the set relationship predicates change over the different levels of reasoning,

with
X D_Y _ XD_Y _ X D_Y.

Another interesting operation in this context is set subtraction:

• A \ B = {p,q} \ {p} = {q}, which is x(1,3,4);

• A_B = A \ [_ = x(ia(l: 5)) \ x(ia(l: 3)) = x(ia(4,5)), which is x(1,4);

• A\B= A\ B=x(1,3,4)\x(1,3,4)=O.

As described in Section 5, A \ B (and the corresponding sets at lower levels) can be viewed

as a so called incremental schedule, which indicates what has to be communicated if A is

needed and B is already available in local memory. We can see immediately the consequences

for this incremental schedule in the example: the more we know about portions, the less we

might have to communicate. Formally,

Z

X\Y 2 X_Y D_ X\Y.

To aid formulating conservative equations which still offer the possibility to exploit any

knowledge potentially available at compile time, we introduce some set operators which map

sets of portions into sets of portions. Given some set of portions SET, we define

SET* = {PIP has same array as some q 6_ SET},

SEW = {Pl SET might affect p}

= {pip'SET :/: 0 cannot be disproven}

c_ SET*,

SETh = {P I SET contains p}
,,%

= {plpC_SET can be proven}

D_ SET,

SET' -- {Pl SET might partially touch part of p}

= SET _ \ SET _.

o

-2
__2:

SET* can be derived easily from SET by just reducing a bit matrix (array names by

index sets) to a bit column (array names) using row-wise OR. From there we can conserva-

tively approximate SET -J, SET r_, and SET ° directly, or we can employ further compile time

knowledge about how portions relate to each other if available. Either way, we do not leave

the portion space as given in the program, i.e., we can still represent these sets with binary

bit matrices.

For example, let the portions p, q, r be defined as above, and let D = {q}. Assuming no

compile time knowledge at the element or reference level, we can conservatively assume that

D* = {p,q,r}, D ° = {p,q,r}, /)n = {q}, and D ° = {p,r}. With knowledge at the element

level, we have /9* = {p,q,r}, D ° = {p,q,r}, D ° = {q,r}, and DO = {p}. Reference level

knowledge gives D* = {p,q,r}, DO = {p,q,r}, DO = {p,q,r}, and D ° = (_.

A point to keep in mind when reasoning about which elements are contained in wtlich

portions and how portions relate to each other is that two portions p, q might globally

contain the same set of array elements of some array X, but that locall 9 a given processor

sees different parts of X for p and q. (This applies to lhs occurrences as well, since we apply

the owner computes rule based on index array ownerships, not on data array ownerships;

otherwise we would not need a SCATTER operation). In this case there has communication

to occur if for example we first define p and then use q. The important consequence is that

we must apply _ and - based on the share of each processor.

Furthermore, we have to keep different distributions of arrays and index arrays in mind

for the analysis. For example, we cannot reuse a schedule between two portions which have

the same index set, but whose arrays are distributed differently. For sake of simplicity,

however, we assume in this paper that all arrays are conformable.

3 The Local Flow Variables

We define the local flow variables to be the components of the data flow equations which are

determined by local analysis of each loop. In the following,

• l stands for an arbitrary loop,

• p denotes a portion x(ia(lb:ub)),

• an occurrence of p is either a use of p or a definition of p, and

• variable or flow variable stand for data flow variables.

We begin with two variables, REF and DEF, which are familiar from standard live

variable analysis. A point to keep in mind, however, is that here live does not refer to

whole arrays, but to limited portions thereof instead. Also, there may be conditionals in the

loops generating the variables, which can be handled by annotating portions with (symbolic)

guards applying to whole portions or elements thereof.

For each loop l, we define

REF(1): the portions live on entry to l, and

DEF(I): the portions defined in I.

6

Formally:

REF(I) = {p I first strut containing p in I reads p},

DEF(l) = {p l some strut in l assigns to p}.

To aid the extension to reduction statements discussed in Section 6, we do not base the

further development of the framework on REF and DEF directly, but replace them with

GET and PUT. These variables are used to derive the portions which have to be buffered

locally. We define

GET(l): the portions referenced in l from local memory (the buffer),

PUT(l): the portions written by l into the buffer, and

BUF(I): the portions which will be buffered on exit from I.

The equations (which will be redefined in Section 6):

GET(l) = REF(I),

PUT(l) = DEF(I),

BUF(I) = GET(l) U PUT(l).

We also have to compute the llve ranges of index sets, otherwise we might accldental]y

try to communicate a portion before or after tile program region where the index set of that

portion is available (i.e., before the index set is defined or after it is overwritten with other

values). We define

IND(1): the portions whose index sets may be computed (in part) by l.

KILL(l): the portions that may be made invalid by l, either because l assigns an overlapping

part of the array or 1 reassigns the index set. GATHER operations can never be hoisted

above l for these portions.

FLUSH(l): the portions that may be read by l or whose index sets may be reassigned by

I. SCATTER operations can never be delayed until after 1 for these portions.

Formally:

IND(1) = {p I P has index set ia(imi,_: imax)

and l assigns to ia},

KILL(1) = IND(I) t_JDEF°(1),

FLUSH(1) = IND(1) 0 REF°(1).

4 The Global Flow Variables

The computation of the global flow variables constitutes the meat of the data flow frame-

work. Here we actually propagate knowledge about the communication characteristics of

the loops around in the flow graph. The problems addressed here have elements from Com-

mon Subexpression Elimination, Loop lnvariant Code Motion, and Dead Code Elimination.

As already mentioned, all equations given here are rapid, so we can expect to solve them

efficiently using simple iterative techniques. All global variables are initialized to 0.

4.1 Fetches

The strategy for determining where to place GATHER operations is based on the following
definitions:

LIVEany/all(l): the portions which are needed in l or in all/any of the following loops.

BUFFD(1): the portions which are already available when entering l. Here we assume that

buffers are not flushed unless the data in them may be invalid, because either the data

array or the index array has been assigned to;

HOIST(l): the portions for which a GATHER should be hoisted ahead of l.

FETCH(l): the portions which are needed in i, or which are needed in some later loop and
can be hoisted before l.

The equations:

[

!
__-2

F
t_

i
g:

r-

E

E:

L

=

!

LIVE_U(l) = GET(l) u _ (LIVE_U(s) \ KILL(1)),
s_succs(1)

LIVE°= (I)= GET(1)U U (LIVE° (s)\ KILL(1)),
s_s_ccs(l)

BUFFD(l) = BUF(l)U _ (BUFFD(p) \ KILL(1)),

pEpreds(I)

HOIST(1) = _ (LIVE_"(p) U BUFFD(p)),
pEpreds(1)

FETCH(l) = GET(l) U

(HOIST(s) n FETCtt(s)).
s_succs(l)

At this point, we have identified candidate locations in the program for placing GATHER's.

In short, whenever a portion appears in a FETCH(l) set, then that portion can be GATHER'ed

before l and will be used before it is assigned. The final placement will be determined by
the result flow variables discussed in Section 5.

Note that we can not only distinguish the variables defined so far by whether they are

local or global, but we can also classify them into either reflecting fixed properties inherent

of the analyzed program, or being subject to heuristics. Furthermore, this classification can

be done based either on the definition of the variable, i.e., how it is defined in terms of

other variables, or on the actual values of the variable. For example, HOIST is currently

defined so that we combine and hoist up GATHER's as much as possible, subject to the

constraint that we never want to overcommunicate (even if that might be advantageous in

some cases, for example in saving schedules). If we, for example, replace the LIVE au in

the definition of HOIST with LIVE _ny, we could hoist up communication even further, at

the expense of possibly communicating unnecessary data. In other words, the definition of

HOIST is a matter of heuristics, which is not the case for the other definitions so far. For

other variables dependent on HOIST (so far, FETCH is the only such variable), their values

become a matter of the chosen heuristics as well, but not their definition.

4.2 Stores

The high level strategy for determining where to place SCATTER operations is relatively

similar to the one for placing GATHER's. Note that we do not have to scatter portions

(i.e., send them back to the owner) if they are used only locally, which is why we restrict

our attention to GET _ instead of GET. The definitions:

HINany/all(1)/HOUTany/alI(I): the portions touched by a reference on any/all of the

paths starting at the entry/exit of I.

DELAY(l): the portions which should be scattered in a later loop, or which are dead oll

exit.

STORE(l): portions which are assigned to in l, or which were assigned to earlier and whose

SCATTER's can be hoisted into I.

HINdU(l) = GET°(l) U HOUT"U(1),

HOUT_U(I) = N HIN""(s),

s_succs(l)

HIN"'_Y(1) = GET(l) U HOUT_'_Y(s),

HOUTanY(l) = U HIN"_(1) ,
sesuccs(l)

DELAY(l) = N (HOUT_"(s) u HOUT""u(s)) \
s6succs(t)

U FLUSH(s),
sesuccs(l)

STORE(1) = PUT(1) U

(DELA Y (p) N STORE(p)).
pEpreds(l)

Our heuristic, here defined by DELA Y, is to combine and delay SCATTER's as much as

possible, subject to the constraint that we never scatter data which are dead.

5 The Result Flow Variables

The result flow variables given in this section are computed after solving the equations given

so far. They should accurately describe which portions have to be gathered before entering

I or scattered after leaving l (possibly using reductions). Here we want to take previous and

succeeding loops and their communication requirements into account as well.

5.1 Fetches

Similarly to FETCH, GATH(1) describes which portions have to be in local memory before

entering I. However, it excludes portions which must already be locally available either

by previous gathers or by previous calculations. Furthermore, we may not only exclude

9

i

these available data on a portion by portion basis, but also on an element by element basis.

In other words, if we know that a portion x(±a(±mi,_:i,_)) is buffered, then we might

not only eliminate gathers of exactly that portion, but we can also save on a gather of a

potentially overlapping portion x (ia (j mi,_:j,_)) by gathering only the increment from the

first portion to the second one.
z

For that purpose we compute incremental schedules using the \ operator as introduced

in Section 2; recall that A \B contains exactly those references which appear in the portions

in A but do not appear in any of the portions in B. Note that this operator, unlike the

\, U, N used in tile flow equations so far, brings us out of the fixed space of sets of portions

appearing in the program text, and applying it repeatedly can lead to an explosion of tile

number portions we have to be able to represent (nestings of increments of intersections of

increments, etc.). Applying this operator just once, however, leads to sets which can still

be represented by 3-valued "bit" vectors/matrices; in addition to included/not included, we

also need explicitly excluded.

Note also that A \B = 0 is possible even for A \ B :_ 0. This reflects for example the

case where we express a mesh and its boundary as different portions of the same array; the

portions are distinct, but one contains a subset of the other.

The equation:

GATH(1) = FETCH(1) \

(FETCH(p) U BUFFD(p)).
pEpreds(l)

5.2 Stores

The SCATT variables are derived from the STORE variables, except that we eliminate

unnecessary scatters by excluding portions which either will be scattered later, or which are
z

not at least potentially live (using HOUT"'_v). Again, we use the set operator \ to support

incremental schedules.

SCATT(l) : STORE(l) \

(STORE(s) tO UOUT_'W(s)).
s_ _ccs(l)

Note that we can still override the communication patterns obtained by global analysis

for GATH and SCATT by just substituting the local counterparts GET and PUT for them.

Furthermore, this can be done for either both variables or just one of them, since they do

not rely on each other, but merely on the loop properties.

5.3 Schedules

The framework described so far gives an accurate description of which schedules are needed

where. Critical for the overall cost associated with our communications is also the generation

of these schedules, in particular where the schedules are generated. However, once we know

the communication requirements, schedule computation placement appears to be relatively

10

straightforward. Therefore,wecurrently usethe simple heuristic of generatingschedulesas
soonaspossible,i.e., as soon as the necessary index arrays are available. This seems to work

well in the codes we have considered so far.

6 Reduction Variables

As indicated earlier, the framework developed so far can be extended to take advantage of

reduction statements as well. The portions exclusively appearing in reduction statements

can be treated differently from other defs and uses, since they are not necessarily brought

into local memory if we use reduction operations like SCATTERADD or SCATTERMULT.

However, portions appearing in different reduction operations within one loop have to be

brought into local memory, so we have to carefully separate tile portions into the ones used

exclusively in ADD reductions and the ones used only in MULT reductions:

ADD(I) = {p [all q E pU are only added to in l},

MULT(l) = {p [all q E pU are only multiplied to in l}.

We derive RED, the set of all portions which are used exclusively in reduction operations,

and redefine GET and PUT which were introduced in Section 3:

RED(l) = ADD(l) U MULT(I),

GET(I) = REF(1) \ RED(1),

PUT(1) = DEF(1) \ RED(l).

The changes so far have eliminated the GATHER's and SCATTER's for portions which

appear exclusively in reductions.

We now define another, separate framework, which computes only the SCATTER_ADD's

(similarly for the other reductions). This ADD framework coexists with the non-reduction

framework which is still used to compute communication requirements for non-reduction

operations. The redefined variables are:

aETADD(I) = PEP(l) \ ADD(I),

FLUSH ADD(1) = IND(1) U GET°ADD(1),

STOREADD(I) = ADD(l) U N
pEpreds(l)

(DELAY ADD(p) STORC AD.(p)).

[jTA]any/all ny/all
HOU_D D DELA YADD,Corresponding to these new variables, we can derive ADD ,

and SCATTADD with the same equations as for the non-reduction framework. SCATTADD

now indicates where to place SCATTER_ADD's.

Like for the non-reduction framework, we can override the result variable selectively

with their local counterpart, which is here ADD. Note that the flow equations for ADD are

defined independently of other reductions. This simplifies extending the framework to other

reduction operations by just adding flow variables and equations, without having to modify

existing ones (except extending RED).

I1

i:

i

GATHER(z(nfl(l:nf)),z(nf2(l:nf)))

do iii = 1, itime

GATHER(y(iel (1 :ne)),y(ie2(l:ne)),

y(nfl(l:nf)),y(nf2(l:nf)))

do i = l, ne

x(iel(i)) = x(iel(i)) + y(ie2(i))

x(ie2(i)) = x(ie2(i)) + y(iel(i))
enddo

do j = 1, nf

x(nfl(j)) = x(nfl(j)) + y(nf2(j)) + z(nf2(j))

x(nf2(j)) = x(nf2(j)) + y(nfl(j)) + z(nfl(j))
enddo

do k = l, ne

x(iel(k)) = x(iel(k)) + y(ie2(k))

x(ie2(k)) = x(ie2(k)) + y(iel(k))

enddo

SC ATTERAD D(x(ie 1(l:ne)),x(ie2(1:ne')),

x(nfl (1 :nf)),x(nf2(1 :nf)))

do l = l, nn

y(l) = x(1)
enddo

enddo

Figure 1: Example code, communication is already inserted as derived by the framework.

7 Example

Figure 1 shows an example code. In this program, we have

• four inner loops, 11, 12, I3, and 14;

• one entry and one exit pad, 10 and 15;

• three array names, x, y, and z;

• five index sets, sl = iel(l : nc), s2 = ie2(1 : ne), s3 = ifl(1 : n f), s4 = if2(1 : nf),

and ss = identity(1 :nn);

• this spans a bit matrix of fifteen portions, xl = x(sl),x2 = x(s2),... ,z5 = z(ss), twelve

of which actually occur in the program text.

The corresponding flow graph is shown in Figure 2.

The bit matrices of the resulting local flow variables are shown in Figure 3. A matrix

entry for a particular portion p and a flow variable VAR is defined as follows:

"1" - p is included in VAR,

"_" - p is not included in VAR,

i

12

z0,
/

IX2_X2 + _

l

Figure 2: Flow graph for example code.

"0" - p is explicitly excluded from VAR (as a result of the \ operator; in our example, there

are none such entries due to the simple control flow structure).

Figure 4 shows the global and result variables. Figure 5 shows the variables for the ADD

framework. The result variables, i.e.GATH and SCATT, determine where the GATHER

and SCATTER operations should be placed. If the bit representing a portion is set in the

GATH set, then a GATHER operation for that portion is placed at the beginning of that

loop. Similarly, a set bit in the SCATT set results in placement of a SCATTER operation

(SCATTER_ADD in the ADD framework) at the end of a loop. GATHER's and SCATTER's

of portions with identity as the index array are ignored. This is valid because they represent

data movement from a processor to itself.

We do not show here the optimizations needed to generate the schedule operations (i.e.,

the inspectors). In general, the method is to identify the index sets used, and insert the

inspectors at the birthpoints of those sets. The first step can be done by inspection, while

the second is a simple application of reaching definition analysis.

8 Experimental Results

We summarize the results of some of the experiments we have carried out to evaluate the per-

formance impact of our optimizations. The experiments employed an explicit unstructured

mesh solver of the three dimensional Euler equations which comprise a non-linear system of

13

i

REF

DEF

ADD

RED

GET

11 11_

..... 11 11_

............. 11_

..... 11 11_

.... 11 11_

..... 11 11_

11

11___

1------

11___

11___

....

....

....

....

11...... 11_ 11___

........... 11

PUT

BUF

KILL

FLUSH

....................

..... 11 11_ 11 1

............. 11

....... 111 11__1 __111

.......... 1111

........ 111 11__1 __111 1111

........ 111 11__1 _All

11__1

Figure 3: Local flow variables for example code.

five differential equations. The calculation consists of a sequence of loops over edges, bound-

ary faces and nodes of an unstructured mesh. The code was originally developed by Dimitri

Mavriplis. The program was ported to the Touchstone Delta using Parti primitives [1, 2]

and the code was run to simulate a variety of aircraft configurations under a range of test

conditions. While the port was carried out by |land, the strategy used to place the PARTI

primitives was tile same as tile strategies that would result from our dataflow framework.

We executed a number of different versions of the parallel Euler solver to give an idea of how

the code generated using the dataflow framework would affect performance.

The reader should note that the simple test loops presented in Section 7 were for ease

of exposition, our experimental work involved a full unstructured explicit Euler solver. The

example code shown in Figure 1 depicts loops which are motivated by the actual Euler solver.

The loop structure of the example code can be derived from the actual solver by inlining the

function calls. The main loop in the example-is analogous to a time-stepping loop. Arrays

14

..............

LIV_ u 1111_ 1111_ 1111_ 11

__ll 11_ __11

..............

LIVE _nv 1111_ 1111_ llll_ 11

__11 11_ __11 11_ __11

................. 1 1

BUFFD 11___ 1111_ 1111 1 1

............ 11_ __11_ __11_ __11_

.....

HOL_T 1111_ 1111_ 1111 1

11 11 11 11_ __11_

...................

FETCH 1111_ 1111_ 11___

__11 11 11

GA TH 1111

__11

1111_ 1111_ ii11_ 1111

HOUT _u 11111 11111 __111

11__1 11__1

....

1111_ 1111_ 1111_ 1111_ 1111

HOUT _'_v 11111 11111 11111 11111 11111

11__1 11__1 11__1 11__1 11__!

11 11_ 11 1 11___ 11111

DELAY 11 11 11___ 11111

11111 __11 11_ _11_ 11111 11111

STORE

SCATT 1

Figure 4: Global flow variables and result flow variables for example code.

15

GETADD

FL U,.,CH ADD

HOUT_AUDD

any
HOUT ADD

DELA Y ADD

STOREADD

SCA TT ADD

............. ' 1

11 i1_ 11

__11_

........ 111 11__1

........... 11__1

1111_ 1II1_ 1111_

11111 11111 __111

11__1 11__1

illl_ 1111_ 1111_

lllll lllll lllll

ll__l ll__l ll__l

lllll lllll lllll

ll ii_

1111_

__111

1111_

llll_ 1111_

lllll lllll

ll__l ll__l

___l 11__

ll__

11111

11111

11111 __11 11 11_

'11___ 1111_ 1111_

11111 11111

1111_

Figure 5: Flow variables for ADD framework of example code.

in the actual Euler solver required GATHER'ing and SCATTER'ing at different levels, as

illustrated by the y and z arrays in the example. Unlike our example, the arrays in the actual

code are multidimensional; incorporating this into our framework only requires treating the

additional dimension as a regularly-accessed array. (This dimension has a size of five, and

all elements in that dimension are set together.) There are three different kinds of loops

present: two over the edges (11 and /3), one over the boundary faces (12) and one over the

nodes (14). These are typical of the variety of loop types found in the actual code. In

summary, Figure 1 abstracts many of the complex parts of the actual code (such as control

flow and irregular computations), while ignoring the straightforward parts (such as short

vectors in other dimensions).

The test case we report here involves the computation of a highly resolved flow over a

three-dimensional aircraft configuration. The mesh contained a total of 804,056 points and

approximately 4.5 million tetrahedra. We believe this to be the largest unstructured grid

Euler solution attempted to date. In Figure 6, we depict one of the meshes used in our

experimentation (we do not show the 804K mesh due to printing and resolution limitations).

For this case, the freestream Mach number is 0.768 and the incidence is 1.16 degrees. We

employed the recursive spectral partitioning algorithm to carry out partitioning [8, 10].

Partitioning was performed on a sequential machine as a preprocessing operation.

We present timings that result from four different implementations of the Euler solver. In

16

7
/
I

/
t

/
/

P

Figure 6: Coarse Unstructured Mesh about an Aircraft Configuration with Single Nacelle;

Number of Points = 106,064, Number of Tetrahedra = 575,986.

two cases, we employ incremental scheduling and aggressively combine and hoist gather and

accumulate procedure calls. In the two other cases, we do not make use of the knowledge we

would obtain through global dataflow analysis in placement of gather, scatter and accumulate

procedure calls. In these versions we place gather procedures immediately before loops that

contain irregular array references. The use of incremental scheduling leads to a large amount

of live data reuse. For instance, one step of Runge Kutta integration in the experimental

code uses the flow variables in a sequence of three loops over edges followed by a loop over

boundary faces. The flow variables are only updated at the end of the entire integration,

rather than after each loop. We can obtain all of the off-processor flow variables needed at

the beginning of the step.

The indirection arrays (in Figure 1 the arrays iel, ie2, ill, if2), with which we

form our schedules, usually do not get written into in non-adaptive calculations. In such

situations one can form the communication schedules before any actual computation begins,

i.e., in the preprocessing stage. In our experimental code, the edges and the boundary faces

of the mesh are fixed throughout the computation. Hence, we can very easily move the

formation of the schedule outside the main iteration loop, as the indirection arrays are live

throughout loop body. The only way the generation of the schedules (i.e., the inspectors)
can be moved outside a block of code is if it can be ascertained that the indirection array,

with which the schedule is being formed, is live inside the whole block. This can only be

determined through global dataflow analysis.

We present timings that result from generating schedules as soon as the necessary in-

dex arrays are generated and timings that result from generating a new schedule for each

17

i

Scheduling Method

Time per

Iteration

(seconds)

Not incremental 6.91

inside of main loop

Not incremental

outside of main loop

Incremental.

inside of main loop

Incremental,

outside of main loop

4.18

Perfor-

mance

(Mflops)

573

947

Preprocessing

Time

(seconds)

273

2.73

5.64 702

2.65

299

1496 2.99

Table 1: Explicit Unstructured Euler Solver on 804K Mesh on 512 Delta Processors

invocation of each gather, scatter or accumulate procedure call.

Table 1 depicts:

• The time required per iteration,

• The computational rate in Mflops, and

• The preprocessing time needed per iteration for generating all communication sched-

ules.

Comparing the times for scheduling inside the loop and scheduling only once in the compu-

tation, we see performance improvements ranging from 65% to over 100% The preprocessing

time increases only modestly when we use incremental scheduling and is roughly equal to

the cost of a single parallelized iteration. Once we have hoisted schedule generation outside

the main iteration loop, use of incremental scheduling leads to an additional 58% reduction

in total time.

9 Conclusions

Communicating the right data at the right time and place is a difficult, yet crucial task

for parallelizing irregular problems. The PARTI primitives are valuable tools for the first

part of the problem, namely for determining where to find which data and for efficient

data exchange. The dataflow framework presented in this paper is designed for attacking

the second part of the problem, namely enabling the compiler to make good use of these

primitives without further advice by the user. We believe our approach to be effective for a

wide range of interesting problems, as illustrated for an explicit unstructured mesh solver.

18

References

[1] R. Das, D. Mavriplis, J. Saltz, S. Gupta, and R. Ponnusamy. The design and implemen-

tation of a parallel unstructured Euler solver using software primitives, AIAA-92-0562.

In Proceedings of the 30th Aerospace Sciences Meeting. AIAA, January 1992.

[2] R. Das, R. Ponnusamy, J. Saltz, and D. Mavriplis. Distributed memory compiler meth-

ods for irregular problems -- data copy reuse and runtime partitioning. ICASE Report

91-73, Institute for Computer Application in Science and Engineering, Hampton, VA,

September 1991.

[3] T. Gross and P. Steenkiste. Structured dataflow analysis for arrays and its use in an

optimizing compiler. Software--Practice and Ezperience, 20 (2): 133-155, February 1990.

[4] S. Hiranandani, K. Kennedy, C. Koelbe], U. Kremer, and C. Tseng. An overview of

the Fortran D programming system. In U. Banerjee, D. Gelernter, A. Nicolau, and

D. Padua, editors, Languages and Compilers for Parallel Computing, Fourth Interna-

tional Workshop, Santa Clara, CA, August 1991. Springer-Verlag.

[5] J. Kam and J. Ullman. Global data flow analysis and iterative algorithms. Journal of

the ACM, 23(1):159-171, January 1976.

[6] C. Koelbel, P. Mehrotra, and J. Van Rosendale. Supporting shared data structures on

distributed memory machines. In Proceedings of the Second A CM SIGPLAN Symposium

on Principles and Practice of Parallel Programming, Seattle, WA, March 1990.

[r] R. Mirchandaney, J. Saltz, R. Smith, D. Nicol, and K. Crowley. Principles of runtime

support for parallel processors. In Proceedings of the Second International Conference

on Supercomputin9, St. Malo, France, July 1988.

[8] A. Pothen, H. Simon, and K. Liou. Partitioning sparse matrices with eigenvectors of

graphs. SIAM J. Mat. Anal. Appl., 11:430--452, 1990.

[9] J. Saltz, K. Crowley, R. Mirchandaney, and H. Berryman. Run-time scheduling and

execution of loops on message passing machines. Journal of Parallel and Distributed

Computing, 8(4):303 312, April 1990.

[10] H. Simon. Partitioning of unstructured mesh problems for parallel processing. Ill Pro-

ceedings of the Conference on Parallel Methods on Large Scale Structural Analysis and

Physics Applications. Permagon Press, 1991.

19

I Form ApprovedREPORT DOCUMENTATION PAGE OMB_o.0704-0188

Public reposing burden for this collection of informaL=on ,s es%lmatecl to average I hour Der response, including the time for review=ncj instructions, searching existing dat_ sources,
gathefl.g and malntalf_lrlg the data .ceded. and cotnpletincj and reviewing the co|ice:LiOn of information Send comt1_enT$ rec)_rding this burden est,_ate or any other aspect of I_h15
collectlor_ of informattOi% hi,eluding suggestlOo% for feducfncj th_s 10ur_ien, 1:o Washington HeadaUa_ers Services. Directorate Tor Infol"_atiorl OperatiOh$ and RepOctS. 1215/effer'son

Davis Highway, Suite 1204. ArlingtON, VA 22202-4302. and ¢o the Office of Management and Budget PaperwOrk Reduction Project (0704-0 t 68}, Washington. DC 20503.

1. AGENCYUSE ONLY (Le,Jveb/ank) 2. REPORTDATE 3. REPORTTYPE AND DATES COVERED

June 1992 Contractor Report
i

,4. TITLEAND SUBTITLE S. FUNDING NUMBERS
C NASI-18605

COMPILER ANALYSIS FOR IRREGULAR PROBLEMS IN FORTRAN D

6. AUTHOR(S}

Reinhard yon Hanxleden, Ken Kennedy, Charles Koelbel,

RaJa Das, and Joel Saltz

7. PERFORMINGORGANIZATION NAME(S) AND ADDRE'SS(ES}

Institute for Computer Applications in Science

and Englneer_ng

Mall Stop 132C, NASA Langley Research Center

Hampton, VA 23665-5225

g. SPONSORING/MONITORING AGENCY NAME(S} AND AODRESS(ES)

National Aeronautics and Space AdmlnlstratlQn

Langley Research Center

Hampton, VA 23665-5225

WU 505-90-52-01

8. PERFORMING ORGANIZATION
REPORTNUMBER

ICASE Report No. 92-22

IO. SPONSORING/MONITORING
AGENCY REPORTNUMBER

NASA CR-189664

ICASE Report No. 92-22

11. SUPPLEMENTARYNOTES

Langley Technical Monitor:

Final Report

Michael F. Card
Submitted to 5th Workshop on Lan-

guages and Compilers for Parallel

Computing, New Haven, CT, Aug. 92

12a. DISTRIBUTION/AVAILABILITY STATEMENT

Unclassified - Unllm/ted

Subject Category 59, 61

12b. DISTRIBUTION CODE

13. ABSTRACT(Maximum 200 words)

We developed a dataflow framework which provides a basis for rigorously defining

strategies to make use of runt_me preprocesslng methods for distributed memory

multlprocessors.

In many programs, several loops access the same off-processor memory locations.

Our runtlme support gives us a mechanism for tracking and reusing copies of off-

processor data. A key aspect of our compiler analysis strategy is to determine

when it is safe to reuse copies of off-processor data. Another crucial function

of the compiler analysis is to identify situations which allow runtlme pre-

processing overheads to be amortized. This dataflow analysis will make it possible

to effectively use the results of Interprocedural analysis in our efforts to reduce

interprocessor communication and the need for runtlme preprocesslng.

14.SUBJECT TERMS

Partl, high performance fortran, Fortran D, sparse, irregular

compiler

17. SECURITYCLASSIFICATION
OF REPORT

Unclassified

NSN 7540-01-280-5S00

18. SECURITYCLASSIFICATION
OF THIS PAGE

Unclassified

15. NUMBER OF PAGES
21

16. PRICECODE

AQ3
19. SECURITYCLASSIFICATION 20. LIMITATION OFABSTRACT

OF ABSTRACT

Standard Form 298 (Rev 2-89)
Pres(.tlbed by ANSI _td Z39-18
296-102

NASA-Langley, 1992

